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Intensities of X-ray Scattering from a One-Dimensionally Disordered Crystal Having 
the Multilayer Averaged Structure 
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A general formula for the intensity of X-ray scattering from a one-dimensionally disordered layer 
structure is given in matrix form when sharp spots and diffuse streaks are observed along the reciprocal 
lattice rows. The intensity formula with 'Reichweite'= 1 is expressed in the form I(~O)=IL(tp)+Io(~O), 
where the first term gives intensities of Bragg reflexions due to the 'averaged layer structure' whose 
period is p times the thickness of one layer, and the second those of diffuse scattering due to the disorder. 
A solution is given for a model in which each layer site of the p layers is occupied by either of two 
layers with different structure factors. It is shown that in this model no continuous peak shift occurs 
regardless of the degree of disorder. Solutions for the cases where each layer site is occupied by one of 
three or four layers with different structure factors are also given. 
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Introduction 

On many photographs obtained from layer structures 
having one-dimensional disorder, one may often find 
continuous diffuse streaks along the lattice rows 
between spots of sharp reflexions. Examples are DL- 
norleucine (Mathieson, 1953), 1,8-diazacyclotetrade- 
cane-2,9-dione (Northolt & Alexander, 1971), o- 
chlorobenzamide (Kato, Takaki & Sakurai, 1974), 
sodium 2-oxocaprylate (Pant, 1964) and hexagonal 
CaAlzSiOs (Tak6uchi & Donnay, 1959). 

With regard to the analysis of disordered crystals 
such as those mentioned above, a detailed treatment 
of intensities will be presented on the basis of the 
matrix method given by Kakinoki & Komura (1965) 
(hereinafter KK), when sharp spots can be regarded 
as Bragg reflexions due to the 'multilayer averaged 
structure'. 

The intensity formula for X-ray scattering from a 
one-dimensionally disordered crystal with equal thick- 
ness of layers is given, in electrons, by Hendricks & 
Teller (1942) and KK as 

N - - 1  

I(~o)=NJo+ ~ (N-m)J,, exp (-im~0)+conj. (1) 
m = l  

with 

arm = Tr VWP" and J0 = Tr VW (2) 

where conj. means the complex conjugate of the fore- 
going term; N is the number of layers; ~0-- 2zc~, ~ being 
the continuous variable in the reciprocal space related 
to the scattering vector by 

( s -  s0)/;t, = ~a* + Kb* + Lc*, 

where K, L are integers and a*, b*, c* the reciprocal 
vectors, in which a* is referred to a corresponding to 
the thickness of one layer. The elements of the 

matrices V, W and P (order 1:) are as follows: 

(V)k,=F~,FI, (W)k~=Wfikz and (P)k/=~kl 

where c~k~ is Kronecker's delta; Fk is the structure 
factor of the layer F, ( k = l , . . . , z ) ;  wz is the prob- 
ability of finding the layer Fz in a certain layer position 
(existence probability of F/); c~u is the probability of 
finding the layer F1 after the layer Fk. Relations between 
wz and ~kl are given by KK, 

H P = P H = H  (3) 

where (H)gl = wz. 

Intensity formula 

Let us construct a model of the 'averaged layer struc- 
ture' on the following assumptions: (i) The thickness 
of each layer is the same. (ii) The period of the 
averaged structure is p times the thickness of one 
layer. (iii) The jth site of the p layers is occupied by 
F~ j) ( l= 1 , . . . , t )  with a probability wl J), where 

g 

wIJ'= 1. (4) 
l = l  

The model of the averaged structure may be given 
schematically as follows: 

1 st site 2nd site pth site 

The structure factor for a ~KL reflexion from the 
averaged structure is then given by 

p 

F =  ~ F ~) exp {i(j- 1)~0} (5a) 
j = l  

A C 3 2 A  - 9 
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where 
t 

F ( J ) =  ~,,,(J) lYT(J),,l --I (5b) 
1 = 1  

which denotes the averaged structure factor for the 
j th  layer. 

If ~,k~"¢J) is defined as the probability of finding F~ J) 
after F~ J-l), the matrices P, W and V necessary for 
the calculation for the above model may be written as 
follows: 

P2 
P3 

P =  (6a) 

P~, 
Pl 

with 
r.(J) ~(J)l [ ] ~11 ' ' "  ~ l t  611 "" • ~ l t  ( J ) t  

p j  = = (6b) 

I:~J) ~<J,, 
L ~ t l  ~tt J LO~x o~.j 

and 

with 

w: F1...wl wit w : 

I 
Yll ' ' '  Vlp] 

V =  

LVpl ;ppJ 

V l j  

[F:(,)F(f~)... "F:.)F,J, 

(7) 

(8a) 

(8b) 

As an example, the 'P-table' (see Kakinoki, 1967) for 
p = 3  and t = 2  is shown in Table 1. 

'1" In this paper this type of representation is used for simpli- 
city. 

Table 1. The 'P-table" for  p = 3 and t = 2 

w?) F i  x) 
w(21) F [  I) 

w[Z) Fcl 2) 
w[ z) F(2 2) 

W~ a) F(i 3) 
w? ) F?  ) 

F~t) F(t) Fi2) F(22) F(t a) F?> 
Z(2) ~(2) 11 ~12 
~12) (X(2) 21 22 

((I) ~(1) 11 12 ~(1) ~11) 
21 22 

((3) Gt(3) 11 12 6(( 3 ) ~t( 3 ) 21 22 

Substituting the matrices P, W and V given above 
into (1), we can obtain the intensity formula for our 
model. The next problem is to express this formula in 
terms of Laue and diffuse terms. Let us put 

~(J) w[J) ±ntJ) (9) 
k l  ~ - r  Y k l  

then 

where 

p j = h j + r j  (10) 

hj = and r j =  (11) 

1 w,j L'~,I Z,d 

The matrix P is then written as 

where 

and 

P = K + R  (12) 

h2 

ha 

K =  (13) 

hp 
hi 

R =  

r2 

r3 

Fp 

r l  

(14) 

Here, we give some important relations which are 
necessary for further development of our theory• From 
(4), (7) and (11) we have 

and 
Tr w j = T r  h l = T r  W =  1 (15a) 

h~hj=hj ( i=1,  . . . , t ) .  (15b) 

Using the relation H P = P H = H ,  where 

.1[i i 
1 p 

we have 

(16) 

hjpJ+l=hj+l } 

pihj = h j  . , (17) 

Further, from (12), (13) and (14), we obtain the 
following relations: 
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H K = K H = H  } 

HR = RH = 0 

from which we have 

(18) 

and hence 

h j r j + l = O  } 

r~h s = 0 

KR = RK-- 0 

which leads to the following result: 

pm=Km+Rm (m> 1). 
Hence 

where 
J m = K m + R m  

Km = Tr VWK m and R,, = Tr VWR m. 

These equations are rewritten as (Appendix I) 

l v  
Kra = pj__~l TF Vj+m, jWjhj+m 

and 

(19) 

(20) 

(21) 

(22a) 

(22b) 

(23) 

1 P 
R m =  -~j~=lTr vj+m, jWj r j+ l  . . . r j+  m (24) 

where v~+p.j=v~.j, h j+p=hj  and U+v=U. Equation 
(23) is further reduced to 

Km= 1 ~ F,u+m)Fu ) (25) 
Pi=x 

where F <J) is defined by (5b) and F~J+P)=F<J). 
Referring to (25), let us define 

Ko= 1__ ~ iff,j)l 2 ; (26) 
P i = l  

then 

Ro=&-Ko 
1 ~ t-1 6 

-- E /u,(J)u,(J)ll~'(J),,t~ '~t t~k -F~J ) ]  2. (27) 
P j = t  k<t 

By the use of (22), (26) and (27) a general intensity 
formula may be given by 

X(q~) = IL(@) + Io(~o) (28a) 

where 
N--1 

Iz(~o)=NKo+ ~, ( N - m ) K ~  exp (-imp0) +conj. (28b) 
m=l 

and 
N--1 

II~(9)=NRo+ ~, (N-m)Rm exp ( - imq~)+conj . .  (28¢) 
rn=l 

In these formulae, as will be seen in the following 
sections, I,(~o) gives the intensity of Bragg reflexions 
from the averaged structure and I~(~0) gives the inten- 
sity of diffuse scattering. 

Calculation of IL (~) 

Putting N = p M  and m = 2 + p r  ( O < 2 < p - 1 )  and 
substituting into (28b), we have 

p - I  M--1 
It(9) = -- NKo + ~ K~ exp ( -  i2~0) ~ ( N - p r -  2) 

2=0 r=0 

x exp ( -  ipr~o) + conj..  (29) 

After the summation with respect to r we have (Appen- 
dix II) 

p--1 
l,.(fo) = G(~o) [pKo + ~. (p- m)Km 

ra=l 

x exp (-im~0)+conj.] (30) 

where 2 is replaced by m for convenience and 

G(~o)=(sin z N~o/2)/(sin 2 p~o/2). (31) 

By comparing (30) with (1), it is seen that the formula 
in square brackets of (30) corresponds to the averaged 
intensity of scattering when the number of layers is p 
and the structure factor of the j th  layer is F u) [see 
(25)1. 

Therefore, formula (30) can be rewritten in the form 

1 p-t  
IL(~0) = O(9) [ E [~. FU+') exp {i(j ' -  1)(/7}[ 21 (32) 

r=0 1=1 

where FcJ+v)=F u). At a reciprocal lattice point 
having a coordinate ~ = Hip (H integer), (32) becomes 

p 
L.(Z~rH/p)=p-ZN2[ ~, F u) exp {27riH(j'- 1)/p}[ z. 

j-~l 

Hence, if N is sufficiently large, (32) may be replaced 
by 

Iz(9)= G(9)lFI 2 (33) 
with 

p 
F =  ~ F u) exp {i(j-1)~0} 

j= l  

which is identical with (5). 
Consequently, it may be concluded that Iz(fp) gives 

the intensity of Bragg reflexion from the averaged 
structure given in the preceding section. 

Calculation of Io (~0) for t = 2  

The matrices v~j, w j, rj and pj for t =  2 are as follows: 

F 'i)Ftz J,] r w o ]u) 
V,j= LF;,)F~j ) r ; , ) r [ j ,  J , w j =  LO ~ W2J 

[~11 ~121 (') [~11 
rj = t~21 ~22J ' PJ = I-0C21 ~22-] " 

Note that the parameters ~~J) ~k~ are restricted by the 
relation H P = P H = H ,  so that p parameters, say 
au) ( j = l  .,p), are independent if the existence II ,'" 

probabilities w~ J) (and w~ J)) have been determined from 
the analysis of sharp reflexions. 

A C 32A - 9* 
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The following intensity calculation was carried out 
on the assumption that N is sufficiently large and the 
value of Rm falls off rapidly with increasing m. Inten- 
sity formula (28¢) may then be approximated by 

N - - I  

Io(~o)=NRo+ N ~ R,, exp (-im~o)+conj. .  (34) 
m = l  

For t =  2, Rm and Ro given by (24) and (27), respec- 
tively, may further be reduced to 

1 p 
,v I , v  2 k X l  Rm= ,: -.-0-1~-' "'u)u'u)rtZ* - F;)(J+m)(F1 /'2) (J) 

m 

× 1I (cq~-a20 ~+') (35a) 
v = l  

with 

1 1' ,,(J),,,(J)l ,.~(J)_FV)I2 
rv I r v  2 1~.1 R0= pj=Z (35b) 

by the use of the following relations: 

and rjri=(~lx--c~2t)(i)rJ_0c21) ( j + l )  . ] /  (36) 
,,,<.l),.,ct)r~, [ 1 - 1 

w / r j + l =  , ,1  , , 2  k~-ll - -  1 1 

which can be derived from (19) and (11). 
Let us now put N = p M  and m = 2 + p r  (0N;t_<p- 1). 

Then (34) becomes 
p - 1  M - - 1  

ID(~o) = - NRo + N E exp ( -  i2~0) ~. Rx + p, 
2 = 0  r = 0  

x exp ( -  ipr~o) + conj.. (37) 

From (35) the following relation may be obtained: 

R~ + v,  = R ~ X r  

with 
p 

S'~--- ] - I ( (Z l l - -0~21)  (v) • (38) 
v = I  

Substituting into (37) and summing up with respect to 
r, we have the final result after neglecting X M, giving 

17--1 

ID(~o)=ND(~o) [Ro+(1-X2)  -* ~ (Rm-XR~,_,,) 
m = l  

x exp ( -  imp) + conj.] (39a) 

where 2 is replaced by m for convenience, and 

D(OT)=(1-X2)/(1 +X2-2Xcosp~o) ,  (390) 

For p =  1, the following intensity formula should be 
used: 

Io(tp)= ND(~o)wlw21F1- F212 . (39c) 

Consequently, the intensity of diffuse scattering can 
be calculated from (35), (38) and (39) when the 
'P-table' has been given. 

It is noteworthy that, if the absolute value of X is not 
small compared with unity, the variation of the func- 
tion in the square brackets of (39a) with respect to 
is much slower than that of D(~0), and the latter will be 

the only factor which governs the positions of peak 
maxima. Thus, depending on whether X takes positive 
or negative values, the diffuse maxima occur at the 
positions ~ = H/p, where H is an integer, or (2H+ 1)/2p; 
i.e. there is no continuous peak shift regardless of the 
value of X. 

In concluding this section, we show below the inten- 
sity formulae when p = 3  and t = 2  (see Table 1). 

where 

IL(o)= lFI2(sin 2 Ncp/2)/(sin 2 3~0/2) 

3 

F =  ~ F (J) exp { i ( j -  1)fp} 
j = l  

with 

F ( J )  . . . .  (J) l:i'(J) ± ,,,(J) l:g(J) 
- -  r v  1 Z l  7 -  r v  2 ~t 2 . 

2 

ID(~O)= ND(~o) [Ro + ( 1 -  XZ) -1 ~. (R,,,- XR~_m) 
r a = l  

x exp ( - im~o) + conj.] 

where X =  (cql - CCz0°)(cql - c¢10(2)(~11 - c¢21) (3) 

D(~0)  = ( 1 -  X 2 ) / ( 1  -I- X 2 - 2 X  c o s  3(/7) 

3 
Ro=½ Y , , < J ) , , ~ J ) l ~ l )  ~(J),~ r r l  r v 2  I z 1 - -  z 2  I 

j = l  

3 
R,.=½ ~. ,,,<J),,,(J)tr'*rvl "v2 k"t l_  F~)(J+m)(FI__F2)(J) 

j = l  
m 

x rl (cq1-~20 ~+~> 
v = l  

It is to be noted that if F~J)=F, and w~J)=wk 
(k= 1,2; j =  1,2,3) in Table 1, the period of the 
averaged structure may be reduced to the thickness of 
one layer, i.e. the period of pj becomes three times that 
of the averaged structure. In general, the value of p 
can be chosen to be an integral multiple of the period of 
the averaged structure when diffuse maxima appear at 
~= Hip or (2H + 1)/2p. 

Calculation of 11) (¢) for t_>3 

The treatment of diffuse intensity by the present 
method generally becomes very complicated when 
t>  3, except in the case where matrices V, W and R 
have some special symmetries. In general cases, one 
should apply the 'third method' given by KK. 

By diagonalizing the matrix R we may write R,, in 
the form 

pt 

Rm = • d,x~". (40) 
v = l  

Here xv is the vth root of a characteristic equation 

F(x) = det ( x E - R ) = 0  (41) 

where E is the unit matrix of order pt. The expansion 
for t = 3  is given by 

F(x)=xP{x2p+a,x'+a2,}=O (42) 
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with 

ao= - T r  (~ . . .  ~ )  and azp=det (~  . . .  ~p) 

where ~ is a 2 × 2 matrix with the elements (~#)** = 
(ak~--aa~) (j) (k,l_<2). From (42), x~ ( v = 2 p + l , . . . , 3 p )  
can be chosen to be zero. Hence 

with 

~p 

Rm= ~, d~x m (43a) 
v = l  

p 2 3 

R0= ½ ~ ~. ~ ,,,(J),,,u)~,~, ,~ ,--k~'(J)- F~J)] z. (43b) 
j = l  k < l  

Using the method given by KK [see their equation (45)] 
we have the following intensity formula" 

Xo(~o) 
p--I 

~. { R m "-k (apRm + Rp + m) exp (-- ipq~) } exp (-- im~o) 
: N  m=o 

1 + ap exp ( -  ip~o) + azp exp ( -  2ip~o) 

+ conj. - NRo. (44) 

A similar procedure can be followed when t>4 .  
The expansion of the characteristic equation may be 
given by 

F(x)=xP{x( ' -~)P+apx"-2"+. . .  +at~_~}=0.  (45) 

The diffuse intensity is then given by 

p- - I  t --2 

exp (-imp) 7. exp (-inpe) 
Io(~o) = N m=0 n=O l=0 

t--1 

amp exp (--imp~o) 
m = 0  

+ conj. - NRo (46) 

(Pant, 1964). This example is chosen because we 
found that the intensity formula derived by our theory 
based on the model given by Pant is different from that 
derived by Pant. 

According to Pant, the model of the disordered 
structure is constructed from four kinds of layers, 
namely A~, A2, B1 and B2, and the rule of arrangement 
of these layers is as follows. If the ith layer is AI(A2) , 
the ( i+ 1)th layer is either BI or B2, the probabilities 
of finding B~ and B~ after A~(A2) being 1 -  c((a) and 
a (1 -~) ,  respectively; in the same way, if the ( i+ 1)th 
layer is B~(B2), the ( i+2) th  layer is either A~ or A2, the 
probabilities of finding A~ and A 2 after Ba(B2) being 
1 - c (  (c 0 and ~ (1 -ct), and so on. This stacking mode of 
layers corresponds to the case where p = 2  and t = 2  
in our theory. The 'P-table' is shown in Table 2. 

Table 2. The 'P-table' for the disordered structure of  
sodium 2-oxocaprylate (Pant, 1964) 

w AI Az Bx Bz 
½ A1 1-~  o~ 
½ A~ ~ 1 -~  
½ B~ 1-~  
½ Bz (z 1 - a  

From the consideration of symmetry relations 
between the four layers (see Tavale, Pant & Biswas, 
1964; Pant, 1964), we find the following relations 
when K +  L odd: 

and 

BI=A~ exp (ifp), / 
Bz=A~ exp (i~0) 

A1 - Az = B1 - B2 

(48) 

with a0 = 1. Here, we give only the expansion of the 
characteristic equation for t=4 .  It is: 

with 

and 

F(x)=xP{x3P+apxZP+azpxP+aap}=O (47) 

a p = - T r  (~1 . . .  ~p), 

a2p=Tr (C1 . . .  C2p) 

aap= - d e t  (~i . . .  Op) 

where ~ is a 3 × 3 matrix with the elements (~j)k, = 
(a~z-a4z) (J) (k, l<3)  and (Cj)kz is the cofactor of the 
element (~j)u, i.e. C: is the adjoint of the matrix ~j. 

The value of Rm may be calculated from (22b) or 
(24). However, the resulting formula is usually lengthy 
and complicated. Therefore it is tedious to rearrange 
it into compact form. In such a case one should use the 
formulae given in Appendix III. 

Appl i ca t ion  to s o d i u m  2 - o x o c a p r y l a t e  

In this section, we give an application of our theory to 
the disordered structure of sodium 2-oxocaprylate 

where A1, A2, B1 and B2 are the structure factors for 
the corresponding layers. Using these relations and 
substituting the parameters in Table 2 into (35), (38) 
and (39), we find 

In(q0 = ND(q~) [Ro +(1 - Xz)- 1(R1 - XR';) 

× exp ( -  i~o) + conj.] (49) 

where X = ( 1 - 2 a )  z, Ro=[A1-Az[Z/4, R ~ = R ; =  
[A~-A212(1-2cO/4 and D(~o)=(1-X2)/(1 + X  2 -  
2Xcos 2~0). This formula is further reduced to 

ID(2n~ = NIAx - A212Q (50) 
with 

a = D(2n~) { (1 -  2~)cos z n~ + a2}/{1 + ( 1 - 2 a )  z} 

where ~0 is replaced by 2n~. 
On the other hand, Pant (1964) has derived the 

intensity formula by the method given by Wilson 
(1962). His calculation was made on the basis of the 
model of arrangement of four types of double-layer 
units, namely A~Ba, AzB1, A~B2 and AzB2, which can 
be deduced from Table 2. However, he has made two 
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fundamental errors• First, the equivalent positions of 
B~ and B2 with respect to those of A~ and A2 are in 
error. Second, the calculation of J~t  and J0 is in error. 
If these errors are corrected, it can be shown that an 
intensity formula identical with (50) can be obtained by 
his method• 

The present theory has also been successfully applied 
to the analysis of the disordered structures of o- 
chlorobenzamide (Takaki, Kato & Sakurai, 1975). 

One of the authors (Y.T.) whishes to thank Dr Y. 
Minagawa for helpful discussions. 

APPENDIX I 
Derivation of equations (23) and (24) 

Let us introduce a matrix 

o i lwit o E 51 
where 1 and E are unit matrices of orders t and pt, 
respectively. The matrices K and R are then written as 

where 

Ko=GK and R=GR0 (52) 

hi .hpl 
K0= • and R0= 

rl. " ' rp]  " 

Substituting the relation R =  GR0 into (22b) we have 

R~ = Tr VW(GRo) m 

= Tr • 

r p + l _  m . . . rp 

V W G  m 

= 1 ~ Tr Vj+m, jWjrj+t . . ,  r:+m (53) 
Pj=I 

where U+p=rj .  The same procedure gives 

Km= 1 "~ Tr Vj+m,jwjhj+l • • • hj+m 
P j=l 

1 " 
-- Y Tr vj + m, jwjhj + m (54) 

P j = I  

where relation (15b) is used. 

5" This error was corrected by Pant (1973, private communi- 
cation), 

APPENDIX II 
Summation of equation (29) with respect to r 

Equation (29) may be rewritten as 

M--1 
L(~o)=pKo[-M+ Z ( M - r )  exp (-irp~0)+conj.] 

r=0 
p-1 M--I 

+ [ ~ K~ exp ( -  i2~0) ~ ( N - p r -  2) 
2=1 r = 0  

x exp (-irp~o)+conj.]. (55) 

The summation of the first term gives apparently 
pKoG(~o) with G(~0) given by (31). Using the relation 
K~,=Kp_~t we have 

p-1 M--1 
I,(~o) =pKoG(q~) + ~, K~ exp ( -  i2~p) [ ~ (mp - p r -  2) 

2=1 r=O 
× exp ( -  irp~o) 

M--1 
+ ~, ( m p - p - p r  + 2) exp {i(1 + r)p~o}] 

r = 0  
p--1 

=G(e) [pKo+ ~ (p-;0K~ exp (-i2~o) 
2=1 

p--! 
+ ~.. 2K~ exp {i(p-2)~o}] 

2=1 
p-I  

= G(~o) [pKo+ ~ (p-)o)K~ exp ( -  i2~o) +conj.] . 
2=1 

(56) 

APPENDIX III 
Calculation of Rm for t > 3 

For p = l  

Formula R m for p =  1 is given by 

Rm= Tr VWR m (57) 

where (V)kz=F~Fz, (W)kz=WfikZ and (R)u=flu. This 
formula can be rewritten in the form 

Rm=½ Tr (V+Vr)WRm +½ Tr ( V - V r ) W R  m (58) 

where V r is the transpose of V. From the definition of 
V 

Vr=~¢ 

where ~r is the complex conjugate of V, Therefore the 
first term of (58) is the real part of Rm and the second 
one the imaginary part. 

Let us introduce matrices U and M with the elements 

(U)k,=lFkl 2 and (M)kz=l (59) 

t Kx= - -  ~ F<J+~F *~J~ = __1 F.cs_~>F, ~ 
P l = t  P s = l  

_ 1 ~F,t~+p_~FtS~=Kp_x. 
P s = t  
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respectively. Then using the relation K R = 0  given in 
(20) we have 

U W R  = 

Hence 

IFll 2 

"IF, I,] 
M W R  = 

IFd2 

T r  U W R  m = 0 . 

"IF,12 ] K R = 0 .  

(60a) 

A similar procedure gives 

Tr UrWR ~ = 0 .  

Combining (58) and (60) we have 

(60b) 

R m = - ½ Tr {U + U r -  V -  V T ) W R  m 

- ½ Tr { U -  U r -  V + VT}WR m 

= - ½  Tr SWRm-½ Tr TWR m (61) 

where (S)kt=lF~-Fzl  2 and (T)k,=(F~ + F~) (Fk-Fz) .  

Forp>_2 

In the same way as described above, (24) can be 
rewritten in the form 

1 P 
Rm = --h--- ~ Tr (D + m, j "~ Vy+ m, j)wjrj + 1-- .  rj + m 

zpy=l 

1 P 
+ w -  Y. Tr (D+m, J T - - V j + m , j ) W d r j + l  • .rj+ra • 

zp y=1 
(62) 

Let us introduce a matrix Uj+m,j with the elements 
(Uj+m,j)kz=-lF[J+m)12. Following the same procedure 

as in the preceding paragraph we have 

Tr Uj+m. jwjr j+~. . ,  r j+m=0 ] 

and I (63) 
Tr uJ'+m, j w j r j + l . . ,  r~+m = 0  

where the relations in (19) are used. Combining (62) 
and (63) we obtain the resultant formula: 

1 P 
Rm= fpj~=lTrsj+m, jWjrj+l. . .rj+m 

1 P 
Y~ Tr t j + m , j W j r j + l . . ,  rj+m (64) 

2p  j = l  

where 

and 
(sj + m. J)kZ = (F~, - F '~)  (g + m)(F~ - Fz)  (g) 

(tj+m. j)k, = (F~ + F?)(J+")(Fk-F1) (g). 
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